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1. Introduction

In an effort to reduce the large amount of computing time necessary
to carry out an integration of primitive-equation numerical weather pre-
diction models, an effort was initiated at NMC in the summer of 1969 to
examine the feasibility of employing a semi-implicit integration method with
such models. At that time, Soviet scientists under the direction of Marchuk
had successfully applied this technique to a primitive-equation model (9).
Robert, in Canada, had adapted this idea for the integration of a spectral
model (12), and had begun work on a finite-difference primitive-equation
barotropic model. The latter application turned out to be successful also,
and was subsequently documented in the literature (Kwizak and Robert, 8).

At Robert's suggestion, the NMC effort began with the development of
a primitive-equation barotropic model integrated by the semi-implicit method.
The results were encouraging: the method allowed a stable integration with
a one-hour time step, whereas an explicit "leap-frog" method allowed only a
ten-minute time step. The method requires the solution of a boundary-value
problem at each time step, so that the actual time advantage turned out to
be something like 4:1 rather than 6:1. These experiments were documented
in a paper by McPherson (10). We subsequently combined the method with a
staggered spatial lattice, which offers additional computational economy
(Gerrity and McPherson, 7).

The potential time advantage offered by the semi-implicit method
suggested that its introduction into a multilayer model would effect a
significant reduction in computation time. Following a suggestion by Shuman,
an effort was begun to extend the technique to a simple baroclinic model as
a feasibility study. A series of investigations of alternative methods of
implicit integration and alternative specifications of the vertical coordinate
followed (1,2,3,4,5,6,11,14). We eventually were led to the formulation
presented in this note.

We chose a two-layer representation of the vertical structure,
which allows two free modes, one external and one internal. This vertical
structure has the advantage of economy over a model with many layers, but
suffers some disadvantages as well. For example, only one static stability
and one estimate of vertical motion is permitted. It is therefore unreason-
able to anticipate that the model can represent baroclinic processes with any
-skill, although it should capture the barotropic aspects of the mass and
motion fields. However, it must be remembered that the primary purpose of
this model is to demonstrate the feasibility of the semi-implicit integration
method applied to a model which allows both external and internal gravi-
tational oscillations. We therefore determined a priori that a successful
conclusion of this experiment would consist of a numerically stable calcu-
lation using a time step greater than that allowed by an explicit method,
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with the meteorological aspects of the integration similar to what might
be expected from a barotropic model.

The purpose -of this ;note is to demonstrate a stable integration of
a baroclinic model carried out in one-hour time steps by employing the semi-
implicit method, and to compare that integration with a near-analogous
model, but integrated explicitly. An effort is made to construct both
versions as nearly alike as possible.

In the next section, the basic differential equations are presented
and manipulated to a somewhat more convenient form. Next, the vertical and
horizontal structure of the grid lattice is introduced, and difference
equations for an explicit "leapfrog" scheme are presented. The fourth
section outlines the modification of the difference equations to incorporate
the semi-implicit method, and it is followed by a brief description of the
lateral boundary conditions. The last two sections deal with the initiali-
zation problem for a rather specialized set of data, and the results of an
integration of both explicit and semi-implicit versions of the model.

2. Basic Equations

The equations of motion, thermodynamics, and continuity may be
written for a general vertical coordinate following Shuman and Hovermale (16)
as

+u + m(D + c O3}) - v + ml(u +vu) + v} + u = 0 2.1
-at axa P ax ax y a

av +M + m c _+ Cp ) + f u + m( 1xv + v v) 'Dv =0 2.2
at ay Pay aX y

+ c o = 0 2.3
Da p Da

De + m(u.?P+ vI- -) + 12- =0 2.4
at a y Do . ~ ~ ~ ~ .

at + m2[(a) + ay aa + =0 2.5
at Do - Da 'DaD ax Da aye Mao O

where the hydrostatic approximation has been employed to obtain eqn. (2.3).
The notation in the foregoing set of equations is standard, but it may be
helpful to state the following definitions:

f f - V _ u+ 2.6

(P K 2.7
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K = R/cp, P* is-a reference pressure,
p

e = T l 2.

Together with a definition of a, which we will take as

_ p/p* 2.

where p* is the surface pressure, and an equation in =} which will
presently be derived, this is a closed system.

It is convenient, however, to manipulate this system somewhat; in
particular, to obtain a continuity equation in the same dependent variable
as appears in the nonlinear parts of the pressure-gradient terms of the
momentum equations. In order to do this, it is first recognized that, by
virtue of the definition of a (eqn. 2.9),

8

9

LZ.*Uap P*

The continuity equation (2.5) then becomes

+ p + m m P* + , (Zm P*}3

Next, p is replaced in eqn. (2.7) using eqn. (2.9),

:% f --- dP':7r=

so that gradients of f become

a = aK a(p)K

ax p ax x

and

ai = K OK - 1B~G ~ *

2.11

2.12

2.13

2.14

At this point, it is convenient to

_ Kq:= p*

introduce a new variable q,

2.15
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so that eqns. (2.13) and (2.14) become

Da= B* * K ~&
Ox r*J Dx 2.16

and

K -lttaKq 2.17
a~ ~ ~ P

In order to transform the continuity equation (2.11) into an
expression in the new variable q, it will be noted that if eqn. (2.11) is
multiplied by (Kp -1 ), the terms can be combined to write

aq + K K qm 2 [ax =+):+ 0 +m[um+v)3 0 2.18q-a~~~~~~~~~~~~ +Km[

Now, one of the principal virtues of the a-vertical coordinate is that the
upper and lower boundaries are material surfaces, so that the boundary
conditions are a = 0. In view of this, and the fact that q is not a
function of a, eqn. (2.18) may be integrated between a = 1,0 to obtain

a q + Kqm2f+ a + ] = 0 2.19a~~ ~~~~x + y = a0

a=l
where u - f udo. Similarly, eqn. (2.18) may be differentiated with

C=O
respect to a to obtain

a:2 M2~ rDv ] m (DuI~ + fv3~1] a + rL:xx + Ly ] + ~-q[) +m[Dx = 0 2.202 Du DX y m) Kqaax L3y

which is the desired diagnostic equation in a.

With equations (2.16) and (2.17) employed as appropriate, the basic
system of equations becomes, with

r2G K KYDy
Du 

V -EcP (I K, and Y a _ Th d 

[ a j + ax=+ Y"ek --f + u + .,v v+ aU =0 2.21at ax~ '~' -aD m f x ay hi am
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Dv} : V + Av f + U 3L +v &_
ay T y LmJ ax vay +;-2 0

DO + aOq+ + J + _30 ?- + 
at m[ +- Ty' Dou

= 0

= 0

q + Kqm2[~x[ )atIDXt +ay 3 + m[u + va- v = 0 2.25

2.2632 m23 3 fu} 3u m + a 0(Iq- -'z + 3o[rnJ ]ysmJs Kqs ssss = o 

3. Spatial Differencing and an Explicit Integration Scheme

We now address the question of transforming the differential equations
(2.21-2.26) to an analogous set of difference equations. The vertical
structure of the model and the spatial differencing system are introduced
first, because these will be the same in both the explicit and semi-implicit
versions. The difference equations will be written first in conjunction with
the usual explicit "leapfrog" time integration scheme. In Section 4, the
semi-implicit scheme is introduced.

The vertical structure and arrangement of variables is indicated
schematically below

0=0 a=0

U2' V2' 2

-p=O ~=$2

1P=°-PP 4P

o%-
.rJ

a4 3

G=0
/ / / / / / / // / / / i / / /PP*

This is a convenient arrangement which has the desirable property of allowing
the boundary conditions 6=0 at a=l,0 to be incorporated naturally. In
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developing finite difference equations, we will employ the following
standard notation:

[lp a + 2Acr 3.1

where, in this model, A=-1 and27'~~~~~~~~~ 
3.2-11 (9a, 4- 2} + (a -`i- I 3.292

Note that eqn. (3.2) is a redefinition of the (-C) notation to reflect a
numerical approximation of the integral.

The horizontal differencing system employed here is a variation of
the "semimomentum" method of Shuman and Vanderman (15), which possesses
desirable stability characteristics. We define a lattice of regular points
"+"' at each of which all dependent variables are located at each time step.
The usual averaging and differencing operators, analogous to eqns. (3.1,3.2)
are used.

+ + + + + +

* * * * *

+ + + + + +

* * * * *

+ + + + + +

* * * * *

f~~+nzs~+: ++ + + + +
Ax

In addition, wind components u*, v* will be defined at the points marked by
an asterisk on the schematic; these will subsequently be referred to as "box"
winds. The relations.hip between "box" and gridpoint winds is defined as

U ---U* E -xy
V v

This arrangement, which has been used successfully by Kwizak and
Robert, and by McPherson, in semi-implicit barotropic models, is introduced
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as a means of avoiding a form of the finite difference Laplacian operator
which extends over a 4Ax interval and requires two sets of boundary con-
ditians. It is not necessary for an explicit integration, nor is it
desirable, since it can be shown that the computational stability criterion
allows a time step only half of that permitted by straightforward application
of the semimomentum scheme. However, since the main thrust in this paper is

to employ a semi-implicit integration method, this "partly-staggered" arrange-
ment will be adopted.

The difference equations analogous to (2.21-2.26) may be written as

[u~~~~~~~~_*lt --xy-y_E~~ ~~~~~ A+L (.)x + Ye qx = f -u xY-x -vXY uX -Y~m~~~~~~~~ V, Y 7tRJ -Acj

EU V3.5

Ot [+ + a = - -Y Oxyy - -Xy -

tm~~~~~~~~~~~~~/~v t ]

vyV , 3.6

has beenit sifppressed inr theintderss ofnotatreionaly simplicty.Te continuityo

equmation bxeomes c niae htayvoato sngiilhwvr

y--x
-t I IX.I-y~--oxy' -y -x

q + Km _q[ LXiJ+ Y J = - mXY + vXG t ~ Xyy x y

N . 3.7

Equations (3.5-3.7) apply to each level; a subscript k indicating the level
has been suppressed in the interests of notational simplicity. The continuity

equation becomes

qt+Km2[m + ] x'~y---ryx
q q[ m u~ ~ qx + v~ qy

--M, 3.8

a finite difference form which does not, precisely, guarantee conservation
of mass. Experience indicates that any violation is negligible, however.
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The diagnostic equation in a becomes

y
+ ± m+ (, m+ 2

x ~ ~y ~y

_X _Xy~- -xy--x=- - t!AC(KqXY} 1[ xy.. Y}+ + xXY v2 qY) 

ES, 3.9

where the boundary conditions 6=0 at a=0,1 have been accounted for.

Equations (3.5-3.9) have been deliberately arranged as shown and
their right sides denoted by U, V, N, M, and S, in order to facilitate
the conversion to the semi-implicit method described in the next section.
These quantities will be computed exactly as shown, both in the explicit
and semi-implicit calculations.

Finally, the hydrostatic equation may be written for each layer as

-* -i + Aaal 1'q = 0 3.10

and

:1 2 +A202q = 0. 3.11

These two equations will undergo considerable reformulation in the semi-
implicit model.

Equations (3.5-3.11) constitute a closed set which may be integrated
forward in time. The results of such an integration are discussed in the
last section of this note.

4. The Semi-Implicit Integration Method

As in the barotropic model, the essence of the semi-implicit
integration procedure is to isolate those terms which principally govern
gravitational oscillations and average them in time. The remaining terms
are evaluated explicitly. To accomplish this, we follow the suggestion of
Robert1 and introduce a type of linearization. In particular, it is assumed

1 Personal communication.
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_O that the potential temperature is composed of a basic state value 0 which
is a function of the vertical coordinate only, and a deviation O0 from that
basic state,

e =e + O, 4.1

and that the surface pressure variable q is composed of deviations of q-
around a mean value q,

q q + q '. 4.2

The implications of this linearization are not completely clear, and may
give rise to difficulties, particularly in areas of irregular terrain.
The principal reason for these assumptions is that they lead to a relatively
simple form of the Helmholtz-type equations in which the coefficients are
either constants or at most involve variations of the map factor, and in
which no first-order differences appear.

We will employ the notation

-2t = l[f(t+At) + V(t-At)], 4.3

where ~ is an arbitrary dependent variable. It may be shown that the
identity

--t 
(t ~~~~~~~~~~~4.4-

t - -[ - (t-At)] 4.4
holds; this will prove to be useful. With the introduction of (4.1-4.4)
into the explicit difference equations (3.5-3.9), we may write the semi-
implicit difference equations for each layer as

U*2t -y2t - 2 t *n-1
u? 1 ~~Y 1 "Y 
+ -t( 1x +) AtY EO (q) _ 2 t(*)x- - Aty1 1 q + AtU1

m 2 1

-U 4.5
1

?=2t. --2t ~ -v*n-1
.-R V*+ * tQ¢ ) + AtYe (q) = -I _ . tG*) - AtY O' qx + AtVI

m ~~y y m.y i 

-V 4.6
1
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92t -Zt
81 + AtrF&1

-xy

+ AtN1 E N'
= snEi- 1 _E -t ---xtxj

4.7

where r E In the upper layer,

-at - ~2 t
* ~ ~ -- 7U*2 : L+~-(j

FL ~ 1~2x

,2t
v 21 

2 +
m

x 2t
At (O+ ++)-2 1 2Y

- 2t

+ ARt2y2 (q)x

- 2t

+ Aty2e2 (q)y

,n-1

- u2

*n-l
_V2 Y-x-Aty x q+AtV 2- m 22- ~~~~~y

- V2

and

O tj+ 2-L -a2t K= n -l _a ytLxY[ O
E 2 2 .AAu + AtN 2

N2 4.10

It will be observed that the temporal-averaging operator has been applied
to the geopotential gradient and the linear part of the surface pressure
gradient in the momentum equations, and the linear part of the stability
term of the thermodynamic equations. These terms are treated implicitly.
The terms involving deviations from the basic state are placed on the right
sides of the equations along with the advective terms, all of which are
to be evaluated explicitly.

The two forms of the continuity equation become
q_ _ + _____ t2t

Ut+ Pt+um2[[1 2}+, (V*+V*2
`qt+ ~AtKm2[[ ~_yWj+ [ _~,jy]I

=qll i-AtKq M'In2

2.; ' - x

x
([vl+v2
Tm J+ AtH E M'

y

and -+ ._ Y
_ at+ I m2[

LTJI +x x
[Svl-v2*11

m J 0 RSIIv y _:}S = sy
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In eqn. (4.11), the linear part of the mean divergence term is treated
implicitly while the analogous term involving q' is evaluated explicitly.
Similarly, the shearsdivergence term in the diagnostic equation for 6 is
treated implicitly.

There remain to be transformed the two statements of the hydrostatic
equation. Introducing (4.1-4.3) into (3.10) and (3.11), we may write

--2t '- -2 -X
- t1 + Aa1O2q t+ Aalq_2t ,- Aa Y y xAy

4.13

and

_xy
~-;2t

A + Aa 2 2q 2t+ Aa 2q 2 = - Aac-q y xy
£t l- 2O2

EH', 4.14

where the "prime" notation is used for consistency. The considerable amount
of smoothing on the explicit nonlinear term on the right side of each
equation was employed to control noise, but may not be necessary. This
particular formulation follows rather naturally from the form of the
preceding equations, and in that sense appears to be consistent. It does,
however, represent a significant departure from the explicit formulation.

Nevertheless, eqns. (4.5-4.14) constitute a complete set of ten equations in
ten unknowns which may be solved numerically, given suitable initial and
lateral boundary conditions. It is possible to reduce this set to a pair
of Helmholtz-type equations in a pair of

-2t --t --2t ---2t -2t -2t
q , a , el ' 2 G' , ' or 2 . We have elected to pursue a

process of elimination which leads to a pair of Helmholtz-type equations in
-2t and t. One of the equations arises basically from eqn. (4.11), and
the other from the hydrostatic equation i(4.13). Employing the latter, a
fundamentally diagnostic equation, in a quasi-prognostic role, may not be
the most desirable formulation. It certainly represents a departure from
the explicit formulation, and probably accounts for some of the differences
between the explicit and implicit forecasts to be discussed in Section 7.

:~~ . -....
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The steps of the process of elimination are as follows:

l. 2 is replaced in eqns. (4.7) and (4.10) through the use of
eqn. {4.12).

~-~.t -2t2. The potential temperature deviations O , u2 are then
eliminated between eqns. (4.13,4.14) an the expressions
resulting from step (1). The result of this will be equations
for 2 t and it n terms of 2t and the shear divergence.

1~~~

3. The two equations resulting from step (2) may be multiplied by
appropriate factors and subtracted, to yield an expression for
t in terms of 2t and q2t

i-2t , [2 i-t _ _ ( -6 )q + - H'- H' 4.15f+"]2 1 ~2 ~ -2t 2

where

HI' H- iqN - iAtrS- 4.16
1 1 Z 'z2 1

and

H H-i -aNqN- -a2qAtrS. 4.17
a a a2 2 42

In (4.15-4.17), Au has been replaced by its numerical value, _. Equation
(4.15) may then be used to replace 2t in the momentum equations.

4. The vertical average and difference of the divergence may then
'? -be formed from the results of step (3), in order to eliminate

the mean and shear divergence terms.

5. The mean divergence term in eqn. (4.11) may be elininated using
the results of step (4). This will yield one Helmholtz-type
equation in q2t and T2t:

--2t 1mAt]2 ~ ~ ~
q 2 _ Kq[Y Gl+ Y 0- (0-0} qI 1 212- qa y

1/mAt.)2r ~ ' [ e+a P- - 2t

L--8 J ( q [2 + -- JV 

M= -- Atm 2 Kq[ (U+U + (V+2

1 t 2 2 4.182 a1 1tre at) 2<:v2 [ca-2 H-H'- 4.18T(~~~~t' Axj 
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6. In order to obtain the second member of the pair of Helmholtz
equations, the shear divergence expression obtained in step (4)
may be used in the equation for - obtained in step (2). This
results in

--2t [ mAt 2 2t -2t

- +1 + A2 61 + I(~1q

+ {T -qr[ylel-y2 2+ 4a2( 1- 2}]v2 q

= ny -.a ._( ~)+ rm At[tul-U2) + (vl-V 2) ]Hi + 1 q~~m2At[(U 2 . y+ ~

+ 1 _ ~ mAt 2 V2 H-H . 4.19
6 4 AX[-~ jV ( H'H '

Equations (4.18) and (4.19) constitute a set of two Helmholtz equations in
q2 and V t which may be solved numerically. However, the solution isI
facilitated somewhat if the equations are manipulated to another form.
Specifically, if we adopt the notation

~~~~4.2
a1 = -{It( K[yjej+ Y202 - la2(61 02)]} 4.20

If~~t)2 ~ 1+a2]-·

a - a[l['At2Kq (2 + -lj ] 4.21
2 1 8 A)J

bl qr(a+ 2 ) 4.22

b2 = bl{s2[ -) alq[y¥1 y2 2E 2 (61 -e 2}1} 4.23

c =1b cae 4.24
2 1 

F1 = a { M ' - -Atm 2Kq[(U+U)Y + (Vi+V2)y]

+ l 2 21 t2 ~ ) .

+ I Tr At ~V2y ',Hy-H"J 4.25+ ~lf~ Kq1 [ 1 i-2"
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and

Fz b]11j + f t i q t[ + (v-v- 7
y

0 + rn(t} qV2 [ 7H-H}} 4.26
64AX Z X

then eqns. (4.18,4.19) may be transformed to the pair

v2 -2 2~) 2 ~ ~ 2
V2 q+;m Z + Wt.+ = , k'202 4.27

\- I

V2 -Ztr 2t -4i2]-2~
+2 CE31 2 r.2-2t = -2j m :G2 4.28

MTjIlt Im2~ m

where:

c-alb 2- 1 ~~~~~~~~~429e = al D, D E [1 + a2 -1 4.29

[ala2bl:
6sD2 D:4.30

~2 [Ial-agcJ D

falbl )
63 a cD 4.31

cc-a bj
6e 1 2D 4.324L1 c
G =; [F -a aa :]D -4.33

1. 1 

and

alF2 -alb2F1
G= [ ]D . 4.34

a12a

In these equations, the symbol V2 is defined as

i;V2 ) O ip + ik *i14.35,j -(V2)ij- i+l,j+l+ ~i+l,j-1+ *i-l,j-1-+ ~i-l,j+l- 4~ij'
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The coefficients al, a, b, h, c and a. may be computed only once, given
the definition of the basic state. The forcing functions G1, G are com-
puted each time step from known fields. Relaxation is then used to solve
(4.27) and (4.28) for 72t and '.E

Once this is accomplished, a time step is completed by calculating:

-2t
from eqn. (4.15)

u t, v2t from eqns. (4.5, 4.6, 4.8, 4.9)

-2t
6 from eqn. (4.12)

---2t 
ei from eqns. (4.7, 4.10).

Values of the variables at t = (n+l)At are then recovered from their
temporally-averaged values by appealing to eqn. (4.3).

A sample integration of this model, both explicit and semi-implicit,
is presented in the last section of this note.

5. Lateral Boundary Conditions

Temporally-invariant lateral boundary conditions were employed in
both explicit and semi-implicit integrations. This was accomplished in the
semi-implicit case simply by allowing the values of the dependent variables
at the outer row/column of grid points, and the values of the "box" winds
in the outer row/column of grid squares, to retain their initial values
throughout the integration. No filtering or diffusion near the boundaries
was found to be necessary.

The form of the Laplacian operator (eqn. 4.35), while it does not
require two sets of boundary conditions, nevertheless yields independent
solutions on two distinct sublattices of the basic array. Such an arrange-
ment is susceptible to separation of the two solutions. One might therefore
consider filtering the fields which result from the relaxation, following
Shuman (13), but such filtering has not been done here.

A modification was necessary in the case of the explicit integration
in order to suppress unwanted noise. In this case, the outer row/column of
grid point values was discarded. The outer row/column of "box" winds and
the penultimate row/column of grid point values were held constant at their
initial values. In addition, at the penultimate row/column of "boxes" and
at the antepenultimate row/column of grid points, strong diffusion in-the
form of the first step of the Lax-Wendroff integration system is applied to
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all prognostic quantities. This is accomplished by replacing the time
derivatives by

D}ij 1 nl1fn+ n n ~, n 5 .at
8t ~t. [~' W~ WnJl i+ij+ ~i-ij' ~ij+l ~ij-1) ] ' .

The lateral boundary condition formulation represents another
possible source of differences between the explicit and implicit integrations.
It is reasonable to anticipate that, as long as the boundaries are positioned
in quiescent zones and the initial data possesses good balance, this source
may not be as important as that associated with the differing treatments of
the hydrostatic equation. Evidence from the experimental integrations tends
to confirm this.

6. Initialization

In view of the unrealistic nature of a two-layer representation of
the atmosphere, and the anticipated resulting inability to describe little
beyond barotropic meteorological behavior, we elected to construct a
particularly simple set of initial data. First, we assumed that the surface
pressure field is constant at 1000 mb, and the terrain is everywhere at
mean sea level. This means that the a =4-½ level is at 500 mb. We then
obtained 500 mb D-values for OOZ 10 February 1970 from an NMC B3 tape, and
constructed the 500 mb height field. Using this field, and a 1000 mb sea
level pressure, we computed a mean temperature for the 1000-500 mb layer
and converted it to potential temperature.

We next computed the areal average of the layer-mean potential
temperature in the lower layer, 01. Using this and an assumed basic-state
static stability r of 60°/Aa, we then constructed the areal mean of the
potential temperature in the upper layer, 02. This value and the areal
mean of the 500 mb geopotential were then used to calculate hydrostatically
the areal mean of the geopotential at the "top" of the model atmosphere.
We then assumed that the geopotential at the top of the model, 42, was
equal to its areal average. The actual potential temperature in the upper
layer (62+02) was then calculated hydrostatically from ~j and 2. We thus
arrive at a set of initial data which features a flat surface pressure and
a flat "top" of the atmosphere. The thermal gradient is directed poleward
in the lower layer, and equatorward in the upper layer.

This allows the use of a simplified form of the nonlinear balance
equation to obtain nondivergent winds, since the gradients of both surface
pressure and geopotential at the top vanish. The principal balance is
between the Coriolis acceleration and half of the 500 mb geopotential
gradient, since that gradient is a layer-mean. This means that the resulting
winds will be the same in both layers, and approximately of half the magni-
tude that would be calculated at the 500 mb level.

16



The final set of initial data is thus nondivergent and hydrostatic,
with no vertical wind shear, but featuring a marked thermal stratification.
It is therefore expected that the external gravity mode, although minimized
initially, will be free to develop, and that the one internal mode allowed
in this model will be generated as a result of the thermal stratification.
With respect to the meteorological modes, the distribution of geopotential
at midtroposphere is realistic, but the advecting winds are underestimated.
The 500 mb height forecasts would be expected to be quite slow with respect
to the translation of flow patterns.

The initialization scheme proposed is adequate for the main thrust
of this experiment, i.e. to demonstrate that semi-implicit method behaves
stably for relatively long time steps in the presence of high-frequency
gravitational oscillations. With more effort, a less specialized set of
data might be constructed. However, it appears more profitable to defer
this effort until work is begun on a baroclinic model with more vertical
resolution..

7. Results of an Experimental Integration

Both explicit and semi-implicit models were integrated to 48 hours
using the initial data described in the previous sections. Figure 1
displays the initial distribution of the height of the a = ½ (500 mb,
initially) level. The 48-hour forecasts of the height field are shown in
Figures 2 (implicit) and 3 (explicit), and of the sea level pressure field
in Figures 4 and 5. The explicit integration required about 33 minutes on
the CDC 6600 computer, while the semi-implicit integration required about
9 minutes to reach 48 hours in one-hour steps. Both times are greater than
they should be, by approximately a factor of two: the explicit version
because the "staggered" arrangement of variables necessitates the use of a
five-minute time step, whereas ten minutes could be used in a straight-
forward semimomentum scheme; and the semi-implicit because the relaxation
procedure employed was not optimized. Convergence required an average of
50 scans per time step, at least twice the number to be anticipated with an
efficient relaxation scheme. Nevertheless, the rough estimate of the time
advantage of the semi-implicit method over an explicit method of 3.5:1 is
in fair agreement with results reported by Kwizak and Robert.

In spite of the differences in formulation between the explicit and
semi-implicit versions, a superficial comparison of Figures 2 and 3
indicates good agreement in the height forecasts. All major features are
located in approximately the same positions on both forecasts. The notice-
able tendency to amplify (compared to the initial data) short meteorological
waves is evident in both. In general, the patterns are very similar.
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On closer inspection, however, significant differences may be
observed, primarily in local detail. The system southeast of Kamchatka,
for example, is forecast to be more intense and to move more rapidly by the
semi-implicit model. The tendency to increase the height gradient south of
the system is present in both, but is especially noticeable in the semi-
implicit version. Downstream, the series of minor troughs and ridges is
further advanced in the semi-implicit version. There is no apparent reason
why the semi-implicit integration method should exhibit faster movement of
short waves, and indeed, this tendency is not observed with respect to
other systems. For example, the shortwave trough over Siberia is treated
almost identically by the two methods, but the system over eastern North
America is moved more rapidly in the explicit version.

In view of the fact that the behavior of the two forecasts around
the boundaries is almost identical, it would appear that the reason for
these differences cannot be attributed to the differing lateral boundary
condition formulation. Rather, a process of elimination rather quickly
leads to the suspicion that the treatment of the hydrostatic equation is
responsible.

These differences are primarily of small horizontal scale. Careful
analysis reveals that there is also a very large scale difference pattern.
In general, the heights on the left half of the semi-implicit forecast are
lower than the corresponding values in the explicit forecast, and the
reverse is true on the right-hand half. A similar tendency may be noted in
the sea level pressure forecasts, Figures 4 and 5. All of the centers are
identifiable and located in nearly the same positions, but their intensities
differ considerably. Again, pressures on the left-hand half of the semi-
implicit forecast tend to be lower than the explicit forecast by 5-10 mb,
while the reverse is true on the right-hand half. This suggests the presence
of a very large scale external gravity oscillation, which of course is treated
differently by the two models.

It is tempting to perform an extensive noise analysis of these two
models, and to duplicate'the Canadian result of very close agreement between
explicit and semi-implicit integrations. Such a process, however, would be
both expensive and time-consuming, and in the end would not yield benefits
in proportion to its cost.

A more profitable allocation of resources would appear to lie in the
direct application of the semi-implicit integration method to a model with
considerably greater vertical resolution. This experiment has successfully
demonstrated the feasibility of implicit treatment of both external and
internal gravity modes, and has resulted in a stable integration to 48 hours
with roughly a 3.5:1 advantage in computing time over an explicit method.
The next logical step is to introduce the method into a model comparable with

currently operational primitive equation models, and preliminary efforts in
that direction are under way.
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